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A series approach to wetting and layering transitions: 11. 
Solid-on-solid models 

K Armitstead and  J M Yeomans 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 11 May 1987 

Abstract. This is the second of three papers in which we discuss the applicability of series 
methods to interface wetting and layering transitions. Here we study the behaviour of a 
solid-on-solid interface, which is attracted to a surface by a local pinning potential. We 
find that, both for the standard and the restricted solid-on-solid models, the interface 
depins from the surface through an infinite sequence of layering transitions as the potential 
tends to zero. The applicability of our results to previous work on the Abraham model in 
three dimensions is discussed. 

1. Introduction 

This paper is the second in a series of three papers on the application of low-temperature 
expansions to wetting and  layering transitions. Previously (Armitstead and Yeomans 
1987) we have shown that the unbinding of an  interface from a wall in the q-state 
Potts model takes place through a sequence of first-order layering transitions as the 
bulk field pinning the interface to the wall tends to zero. We now use extensions of 
the same techniques to study various solid-on-solids models, which are interface 
Hamiltonians that neglect bulk fluctuations and overhangs (Temperley 1952). We shall 
consider the case in which a two-dimensional interface is attracted to a substrate by a 
pinning potential. Entropy causes the interface to be repelled by the surface, and it 
has been proved (Chalker 1982a) that for all values of pinning potential there is a 
temperature below which the interface is bound, and another, higher one, above which 
it is unbound. Moreover, Bricmont et a1 (1986) have shown that, in the case when 
the surface potential equals zero, the distance of the interface from the wall diverges 
as the thermodynamic limit is taken. Our aim is to investigate the nature of this wetting 
transition as the potential tends to zero; in particular, whether layering occurs or 
whether there is just a single unbinding transition. 

The solid-on-solid Hamiltonian we shall consider is 

I 

where the h ,  can take integer values. As we are interested in a two-dimensional interface 
the sums are taken over the sites, i, of a square lattice and restricted to nearest 
neighbours. 
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The solid-on-solid model was first proposed in connection with the theory of crystal 
growth (Temperley 1952, Weeks et a1 1973) and  has been applied extensively to the 
roughening transition of an interface in the three-dimensional Ising model. It is believed 
to be a good approximation to the Ising model (Burton and Cabrera 1949, Weeks et 
a1 1973, Swendsen 1977), at  least up  to the roughening temperature, where the bulk 
is almost (98%) saturated. Indeed, the solid-on-solid approximation becomes exact 
in the highly anisotropic limit. If an Ising model has interactions Jll and J ,  parallel 
and  perpendicular, respectively, to the normal to the wall then the limit J ,  -+ oc with 
J- fixed, and with the boundary conditions which force an  interface into the system, 
gives the solid-on-solid model. 

The U (  h , )  may also be easily related to the interactions and fields in an  k ing  model 
(Nightingale et a1 1984). However, it need not be, and  may describe interactions which 
cannot arise in a rigid k i n g  model such as those introduced by strain in a solid film. 

Various special cases the Hamiltonian (1.1) which have been considered in the 
literature (see, for example, Chui and Weeks 1981, Chalker 1982b) are distinguished 
by their values of y :  for the ‘standard’ solid-on-solid model, y = 1; for the discrete 
Gaussian model, y = 2; and  for the restricted solid-on-solid model ( lh l  - h,l = 0, l ) ,  
y =CO.  The importance of the value of y will depend on whether excitations with 
Ih, - h,i 3 2 contribute significantly. There is considerable evidence that the roughening 
transitions in models with different values of y all belong to the same universality class 
(Chui and Weeks 1976,1981, Weeks et a1 1973, van Beijeren 1977, Emery and Swendsen 
1977). We consider two values of y ,  y =  1 and y = w ,  to see whether they give 
qualitatively the same phase diagram at low temperatures. 

In 0 2 we consider the case y = 1. Diagrams in the low-temperature series which 
are important in driving the transition are identified, and we show that the interface 
unbinds from the surface through an  infinite sequence of layering transitions. The 
model is shown to correspond to the extreme anisotropic limit of the Abraham model 
(Abraham 1980), which has been studied using similar techniques by Duxbury and 
Yeomans (1989 ,  and hence the accuracy of the solid-on-solid model as an  approxima- 
tion to the Abraham model can be tested. Moreover, Duxbury and  Yeomans (1985) 
were unable to establish an infinite sequence of layering transitions and  the solid-on- 
solid result suggests that such a sequence does in fact exist in the Abraham model. 

In § 3 we take y =CO and obtain a qualitatively similar phase diagram. In this limit 
it is easier to identify the important fluctuations. Our results are in disagreement with 
previous work by Luck et a1 (1983) and we suggest why they were unable to identify 
any layering transitions. Finally, in 9 4, the results are discussed and compared to 
those obtained numerically within a mean-field approximation, which has to date been 
the most extensively used method of studying layering transitions. 

The technique used throughout is low-temperature series, expanding about all 
possible degenerate ground states in terms of a small, temperature-dependent variable, 
This method was explained in detail in the previous paper (Armitstead and Yeomans 
19871, and we shall therefore just quote the lowest-order results before showing how 
to evaluate the leading terms to general order. 

2. The standard solid-on-solid model, y = 1 

We consider the Hamiltonian (1.1) with y = 1 and  

U ( h )  = CO, h < o  U ( 0 )  = -U U ( h ) = O ,  h a  1. (2.1) 
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At zero temperature, T = 0 ,  the interface will lie flat and  parallel to the surface. 
When u = 0 all possible positions of the interface are degenerate-for convenience 
these will be labelled by h = h,(  T = 0 ) .  For u > 0, the interface will lie next to the 
surface, h = 0. 

At non-zero temperature entropic fluctuations repel the interface, and hence, for 
u = 0, h =CO is stable. For small u at finite T the interface must unbind from the 
surface because of the competition between the energetic attraction and entropic 
repulsion. To determine the nature of the transition we performed an expansion about 
the multiphase point, U = 0, T = 0. 

2.1. Low-order calculations 

The low-temperature variable used was w = exp( -&I), the Boltzmann factor for 
introducing a one-step height difference between neighbouring sites. As usual, ,B = 
l / k , T  and k ,  is Boltzmann’s constant. Single excitations of the interface lead to 
expressions for the reduced free energy per interface site, Fhr which are O(w4). To 
this order, Fo and F,  contain Boltzmann factors which depend on the magnitude of 
U, whilst Fh,  h 2 2 ,  remain degenerate. The free-energy differences are given by 

F,  - F”= - P u + ( l  + U - 0 - ’ ) w 4 + 0 ( w 6 )  ( 2 . 2 )  

( 2 . 3 )  

where U = exp(pu).  Equations ( 2 . 2 )  and ( 2 . 3 )  show that for a transition between the 
phases with h = 0 and  h > 0 pu must be O( w4). Using this approximation to expand 
the factor associated with the pinning potential 

exp(pu)  = 1 + O( w4) ( 2 . 4 )  

Fh - Fo= -pu + ( 2  - t , - ’ )W4+O( w6) h a 2  

leads to 

Fh - Fo = - p U  + W 4  + o( W 6 )  ( 2 . 5 )  

Note that all phases with h 5 1 are degenerate in this region. Hence there is a phase 
boundary between phases with h = 0 and h a 1 given by 

( P U ) O . h =  w 4 + o ( w 6 )  h s l .  ( 2 . 6 )  

To determine which interface position, h, becomes stable in the vicinity of this 
boundary requires higher-order terms in the expansion. Taking terms O(w”) in the 
reduced free-energy differences where necessary gives 

h a l .  

F ,  - Fo= -Pu + ( l +  U - ~ - ‘ ) ~ ~ + 2 ( 1  + u 2 -  u - ’ ] w ~  

+ [ y  - ( U + U-’) - : ( U ’  - U - ’ )  + 6 (  u3 - U - ’ )  + ( 0 4 -  u - ~ ) ]  w*+ O( w”) 

(2 .7)  

( 2 . 8 )  

+ 4 w  l o +  1 9 ~ ’ ~  + O( w i 4 )  h a 3  ( 2 . 9 )  
where we have expanded exp(pu)  as in ( 2 . 4 )  to simplify the higher-order terms. As 
an example, we list the diagrams which give rise to (2 .8)  to O ( w 8 ) ,  along with their 

F2-  F ,  = (1 - u ) w 4 + 2 (  1 - U’) w 6+ ( ; + 2 u  + $ U ’  - 6 v 3  - u4)  ~ ~ + 4 w ’ ~ +  18w”+O( wI4) 

Fh - F , =  ( 1 - U )  w4 + 2( 1 - U‘) W‘ + ( g  + U + $0’ - 6 u3 - u4)  W *  
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counts per lattice site and  their Boltzmann weights, in table 1. Equations (2.7)-(2.9) 
lead to the boundary 

Evaluating Fh - F,, h 2 2, along (2.10) gives 

Fh-Fl=-2W'0+O(W'2)  h z 2 .  ( 2 .  

( p u ) ,  h = W 4 + $ W 8 + o ( W 1 0 )  h a 2 .  ( 2 .  

This is negative. Hence h = 1 is a stable phase and there is a phase boundary 

To find the next stable phase we calculate Fh - F z ,  h 3 3. To O( 

Table 1. Contributions to Fz - F ,  for the y = 1 solid-on-solid model to O( wX) .  The lower 
line in each diagram denotes the wall. In  the diagrams marked by * the interface fluctuates 
at four lattice sites which form a square. 

Count per Boltzmann 
Diagram lattice site weight 

U 

uu 

7nI 

*U 

* 
I-- 

1- 

1 

-1  

2 

-2 

-1  

1 

_ -  

2 

6 

-6 

1 

-1 

1 
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Along the 1 : h boundary given by (2.12) 

F h - F > = - 2 W ' 6 + 0 ( W ' s )  h 3 3  (2.14) 

showing that h = 2 is stable. There is a 2 :  h phase boundary at 

(pu)2  h = " 4 + ~ w 8 + 2 w ' 1 0 + O ( d 2 )  h 3 3 .  (2.15) 

Similar calculations taken to O( w 2 2 )  show that the phase with h = 3 becomes stable 

(pu)3  h = w 4 + $ w 8 + ~ w 1 2 + 0 ( w 1 4 )  h 3 4 .  (2.16) 

Notice that the boundaries between higher-order phases differ from those between 
lower-order phases by successively higher-order terms in w. By considering terms in 
the free energy O( wZ8) we may show that all boundaries ( @ ) h  h , h '> h 2 4 ,  have the 
first few terms 

( p u ) h  h = W 4 + ~ w 8 + f W ' 2 + O ( w ' 4 )  h ' >  h 3 4 ,  (2.17) 

In order to establish the phase sequence we have needed to consider diagrams of 
sufficiently high order that the interface touches the surface at two lattice sites, as may 
be seen for the particular case listed in table 1. This is also true when the interface is 
at some general position, and means that the number of the terms in the expansion 
which are needed to demonstrate a possible layering transition increases rapidly as 
the interface moves away from the wall. 

along the boundary given by (2.15). The 3 :  h, h 2 4 ,  boundary is given by 

2.2. General-order calculations 

In order to perform a general-order calculation it is necessary to identify the lowest- 
order fluctuations which are important in distinguishing between the free energies of 
different interface phases. The diagrams with different Boltzmann weights between 
phases at height h and h ' ,  h ' >  h, at lowest order are axial chains of length h, as shown 
in figure 1. Their contribution is 

Fh, -Fh=( l  -?4W4h+O(W4ht2) h ' > h a l .  (2.18) 

However, these diagrams d o  not give any information about the sequence of phases, 
and lead to a phase boundary 

( p U ) h : h '  = o +  o( w') h ' >  h 5 1. (2.19) 

Figure 1. The lowest-order graphs,  for the unrestricted model,  which have different 
Boltzmann weights for interface phases h and  h ' ,  h ' >  h. 



164 K Armitstead and J M Yeomans 

To obtain a non-zero phase boundary requires terms in the expansion O( w ~ ~ + ~ )  

F h . - F h  = [ 1 - ~ + 4 ( 1 - ~ ) ~ * + 2 0 ( 1  - Z I ) W ~ + Z I " ~ ' , ~ + ~ )  w4]  W 4 h  

+ o ( ~ ~ ~ + ~ )  h ' >  h 2 3  (2.20) 

where 6 is the Kronecker delta. This gives 

This boundary is independent of h and all interface phases remain degenerate along 
(2.21). To lift this degeneracy we would need the coefficient of w~~ in equation (2.20) 
to depend on h in the vicinity of a phase boundary. In fact, the lowest-order diagrams 
which do give a non-degenerate phase boundary touch the surface at two lattice sites, 
as noted in the explicit lowest-order calculations in 0 2.1. This situation should be 
compared to the Potts model in a bulk field (Armitstead and Yeomans 1987) where 
this complication does not arise. In that case simple chains, such as those shown in 
figure 1 ,  are sufficient to establish the phase sequence, because the bulk field contributes 
to an energy difference between the two phases. 

The numbers of ways of obtaining the diagrams contributing to Fh.- Fhr h ' >  h, for 
orders greater than w~~ increases rapidly with the order. However, it is shown in the 
appendix that to establish a sequence of layering transitions, it is not necessary to 
count them explicitly. The necessary inductive argument is explained here, leaving the 
mathematical expressions to the appendix. 

Assume that the phase h has been shown to be stable, and that there is a phase 
boundary between h and h', h ' >  h. In the low-temperature series approximation, the 
reduced free-energy difference may be written as 

(2.22) 

where we terminate the series at O( w"' ) ,  and assume, as usual, that higher orders do 
not affect the qualitative nature of the phase diagram. The boundary ( P U ) h : h + l  is 
determined by the condition 

(2.23) 

Substitution of (2.23) into (2.22) for h ' >  h +  1 determines the sign of Fh.-  Fh (or 
equivalently, F h . -  Fh+l) along the h : h + 1 boundary. If 

Fh,-Fh<o+O(W"")  h ' >  h + l  (2.24) 

h + l  appears as the adjacent stable phase. I t  is shown in the appendix that (2.24) 
holds for general h. Therefore, having demonstrated that the phase h + 1 is stable, we 
may repeat the argument, replacing h by h + 1 ,  to show that h + 2 is stable along the 
h + 1 : h' ,  h ' >  h + 1 ,  boundary. As h = 3 has explicitly been shown to be stable, iterating 
the argument leads to a sequence of layering transitions. 

Recall that, for the Potts model described by Armitstead and Yeomans (1987), it 
is not possible to predict an infinite sequence of layering transitions because of 
correction terms 0 ( h w 2 )  arising from axial diagrams with side bumps which may 
dominate for large h. The exclusion of interfacial overhangs and bulk flucutations in 
the solid-on-solid model removes this difficulty, and allows us to predict that the 
sequence is infinite. 
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Note that the boundary between two phases may be written as a power series in 
w. All phase boundaries have the same lowest-order terms, and  boundaries between 
phases with larger h have more terms in common. Chalker (1982a) has derived a 
lower limit on pu, ( p u ) , ,  below which the surface will be completely wet: 

( p u ) ,  = -In( 1 - w‘). (2.25) 

An expansion of ( p u ) ,  to O( w12) is in agreement with equation (2.17), which describes 
the boundary along which all phases h 3 4 are degenerate. 

3. The restricted solid-on-solid model, y = * 
We now study the restricted solid-on-solid model, taking Ih, - h,/ = 0, 1 in ( l . l ) ,  with 
the same choice (2.1) for U ( h , ) .  This proves to be much more tractable mathematically, 
and we are more easily able to demonstrate a full layering sequence at sufficiently low 
temperatures. 

The first two boundaries obtained from the expansion, including ground-state terms 
are 

( p u ) o  1 = w4+2w6+~w*+0(w10)  (3.1) 

( P U ) ~  = 1 6 ~ ’ ~ + 0 ( w ’ ~ )  h s 2 .  (3.2) 

The diagrams which contribute to the expression for the phase boundaries to lowest 
order are shown in figure 2. The restriction on lh, - h,i forces the diagrams to have a 
three-dimensional ‘staircase’ structure and, in contrast to the unrestricted case, the 
differences in Boltzmann weights and counting factors between lowest-order diagrams 
of heights h and h + 1 depend explicitly on h. Therefore these diagrams are already 
sufficient to determine the phase sequence. It is for this reason that the calculations 
are much easier for the case y = CC. 

h” U 
h = ’  * 

h = l  1 I U - 
( a )  Ibi 

Figure 2. Lowest-order three-dimensional graphs for the restricted solid-on-solid model 
which give rise to a non-zero value of Pu along ( a )  the 0 :  1 boundary, ( b )  the 1 : h boundary, 
h > l ,  
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To show that there is an  infinite sequence of layering transitions we use the usual 
inductive argument (Duxbury and Yeomans 1985). Assume first that the phase h has 
been shown to be stable and  that there is a phase boundary between the phases h and 
h '>  h. The reduced free-energy difference between interface positions h and h' is 
needed. A typical lowest-order 'staircase' diagram which has different Boltzmann 
weights for interface positions h and h' is shown in figure 3 ( a ) .  There will be several 
such diagrams of height h at this order: counting them as A ( h )  gives 

Fh - Fh = A (  h ) W" ( 1 - e'') + o( W a +2)  (3 .3)  

( p u ) h  h = o + o ( w ' )  h '>  h. (3.4) 

h ' >  h 

where a = 4h'. Expanding epu as a power series gives 

Inclusion of other diagrams of height h, such as that shown in figure 3( b ) ,  will also 
lead to a zero value for p u h  The diagrams which give the leading-order non-zero 
expression for this phase boundary are of height h + 1 and O( w' ), where a' = 4( h + 1 ) * .  
There will be A ( h  + 1) such diagrams and  hence to leading order near the phase 
boundary 

Fh - Fh = A (  h + 1 )  exp[puG( h ' ,  h + 1)]w"  + A (  h ) w " (  1 -eP") +0( w" +') h '> h. 
(3.5) 

The phase boundary between h and h' is therefore given by 

( p u ) h  h = A ( h + l ) ~ ~ ~ + ~ / A ( h ) + O ( w ~ ~ * ~ )  h '> h. (3.6) 

To establish whether a new phase is stable along the boundary (3.6) we examine 
the sign of Fh - F h i , ,  h '> h + 1. The lowest-order contribution follows from (3.3) and 

Figure 3. ( a )  Lowest-order graph with different Boltzmann weights for the restricted 
solid-on-solid model for interface phases h and h ' ,  h ' >  h. ( b )  Graphs of height h which 
have the same counts for h and h ' ,  and hence do not break the degeneracy between h and 
h' at p u  = 0. 
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is given by 

Fh - F h + l = - ( P U ) h  hA(h+l )W"  +O(WZa-"+' ) h ' > h + l  (3.7) 

= - [ A ( h +  1 ) ] ' ~ ' " - " / A ( h ) + 0 ( ~ ~ " ~ " ' '  1. (3.8) 

As this is negative h + 1 is stable and we may expect a h + 1 : h ' ,  h ' >  h + 1, boundary 
to exist. Explicit calculations have already demonstrated a 0 :  1 and 1 : h boundary. 
Therefore, using an  inductive argument, a sequence of layering transitions is obtained. 

The qualitative form of the phase diagram is the same as the y = 1 model. However, 
the quantitative values are very different as one would expect. The phase diagrams 
are compared in figure 4, which is exaggerated for clarity. In the y = m model the 
effects of thermal fluctuations are suppressed. Hence for a given potential the phase 
boundaries are at a higher temperature. 

Figure 4. Qualitative comparison of the first three phase boundaries for the standard, y = 1, 
solid-on-solid model (full curves) and the restricted, .v = E, solid-on-solid model (broken 
curves). 

Luck er a1 (1983) have studied the restricted solid-on-solid model using numerical 
solutions for strips of finite width, extrapolating the results to an  infinite system. At 
low temperatures they obtain a single first-order transition from h = 0 to h = m, and  
they support their results by a first-order low-temperature expansion. We believe that 
they d o  not observe layering because the numerical method is not sufficiently discerning 
to pick u p  the narrow layering transitions. Moreover, in the low-temperature expansion 
they do not appear to have considered the stability of phases other than h = 0 and h = CO. 

4. Conclusion 

Although the solid-on-solid model is of interest in its own right we can also regard it 
as a simplification of similar models which are otherwise intractable. Duxbury and  
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Yeomans (1985) studied the three-dimensional Abraham Hamiltonian (Abraham 1980) 

(4.1) 

with infinite surface fields on i = 0 and m forcing So = -1 and S ,  = +1 respectively. 
Taking the anisotropic limit 

J:  + +J 2(1- a ) J * +  U J * + W  (4.2) 

(4.1) becomes equivalent to the y = 1 solid-on-solid model. Taking this limit in the 
equations given by Duxbury and Yeomans (1985) reduces them, as would be hoped, 
to our results. The most important terms which occur in the analysis of the Ising model 
and which disappear in the solid-on-solid limit are O(w6). Therefore the phase 
transitions in the Ising model differ noticeably from those of the solid-on-solid model 
when w2 becomes significant compared with 0(1) ,  which is not within the region of 
validity of the low-temperature series. For temperatures below roughening there should 
be good agreement (within 20% ) between the models. 

Duxbury and Yeomans (1985) were able to establish the existence of only two 
transitions in the Abraham model with, to the order to which they were able to take 
the expansion, all phases with h 2 2 (using a notation consistent with the calculations 
in this paper) remaining degenerate on the 2 : m  boundary. It is now obvious from 
our calculations that the problem which they experienced in obtaining further phase 
boundaries arose because the pinning potential is a surface field as opposed to a bulk 
one. To obtain a non-degenerate phase boundary, the expansion must be taken to 
sufficiently high order that the relative change in succcessive terms depends upon h. 
Therefore consideration of just the contribution from axial chains of flipped spins, 
which is easily calculable using a matrix method (Armitstead and Yeomans 1987) is 
not sufficient. Although it is possible to go to sufficiently high orders for the solid-on- 
solid limit, a similar calculation for the full Abraham model appears intractable at the 
moment. 

Pandit et a1 (1982) have performed a mean-field theory for the Hamiltonian (4.1) 
with the inclusion of a bulk field term. Although a detailed comparison is not possible, 
as the calculations presented here correspond to an examination of a small region of 
their parameter space, the qualitative results are in agreement. 

As was discussed in Armitstead and Yeomans (1987), when using low-temperature 
series to expand about a multiphase point one should be aware that the expansion is 
about metastable states for, in this case, finite U. Therefore the exact meaning or 
convergence of the reduced free energies is not obvious. 

In this paper we have shown that both the unrestricted and the restricted solid-on- 
solid models depin from a local surface potential through an infinite sequence of 
layering transitions. The lowest-order diagrams which are required to demonstrate a 
layering transition between h and h + 1 are O( w6h+10) and O( respectively. 
Hence it is more difficult to establish the phase boundaries than in cases where there 
is a bulk field in the Hamiltonian (Duxbury and Yeomans 1985, Armitstead and 
Yeomans 19871, where chains of spins, O( w ~ ~ ) ,  which link the surface to the interface 
drive the transition. This analysis has enabled us to explain the difficulty experienced 
by Duxbury and Yeomans (1985) in trying to establish an infinite sequence of layering 
transitions for the Abraham model. 

Having demonstrated the applicability of the solid-on-solid approximation to the 
study of wetting transitions, the method explained in this paper could now be extended 
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to more realistic, long-ranged, surface potentials which would allow comparison with 
experiment. 

Appendix 

In this appendix we demonstrate the existence of a sequence of layering transitions 
for the unrestricted, y = 1, solid-on-solid model. 

The lowest-order excitation of the interface of height h’ is O( w~~ ) and has a count 
per interface site of 1: this simple excitation is shown in figure 5 ( a ) .  There are four 
possible diagrams of height h‘ per interface site at O( w~~ +’), as shown in figure 5 (  6).  
At O( w ~ ~ ’ + ~ ) ,  however, there are many possible diagrams of height h’, some examples 
of which are shown in figure 5(c) .  At order O( w~~ ”) we shall count the number of 
diagrams of height h’, with 2h ’>  j, as a,, for example, a,= 1 and  a,= 4. Notice that 
we have imposed 2h ’>  j on the a,. The number of diagrams O( w~~ t 2 h ) ,  h’> h, is a 2 h  ; 
however, the number of diagrams O ( W ~ ~ + * ~ )  is not a2h, but a 2 h  -2. The diagrams 
which cause this difference are shown in figures 6 ( a )  and (6). There are four possible 
orientations of the diagram shown in figure 6 ( a )  but only two of the type shown in 
figure 6(6). It is these differences which ultimately lead to the layering transitions. 

To O( w ~ ~ - ’ ) ,  that is considering diagrams which can only touch the surface once, 
h - 3  

Fh+ I - Fh = ( 1 - eP”) W ~ h  “2’ a 21 w21 + W4h+4 e ~u C u ~ ~ w ” .  ( A I )  
, = O  2=0 

The first summation arises from fluctuations of height h, whilst the second is from 
those of height h + 1. To the same order 

h - l  h -3 2 
F, - Fh = (1 -eP”) w4h c az1w2‘ W4h*4 

az1w2’ + . . , + W 6 h - 6  az1w2’ + W 6 h - 2  
, = o  t = O  ,=O 

i c  1 

Figure 5. Examples of graphs which must be considered to establish an infinite phase 
sequence in the unrestricted solid-on-solid model. ( a )  The lowest-order excitation of the 
interface of height h. ( 6 )  Graphs of height h and O ( W ~ ~ + ’ ) .  There are four possible 
orientations of the graph. ( c )  Examples of graphs of height h and O( w4h*4). 
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(a1 lbl  

Figure 6. Graphs which show that for the unrestricted solid-on-solid model there are (I:,, 
possible graphs O ( W ~ ~ ' - ' ~ ) ,  h ' >  h, but only a , , - 2  O ( W ~ ~ + ' ~ ) :  ( a )  has a count of four 
per site whereas ( b )  has a count of only two per site. 

for h odd. Similar expressions follow easily for h even and for Fh, - Fh, h '> h + 1. 
Along the h : h + 1 boundary (Al)  is zero and so we may use 

h - 1  h -3 
W4h+4 pu ( 1 - e P " ) ~ ~ ~  1 a 2 , w 2 ' = -  e 1 a2,w2' 

I =o Z=O 

in equation (A2) to show that 

Fh! - Fh = 0 i- o( W 5 h )  h'> h + 1. ('44) 

To 0(dh+'),  i.e. including diagrams which touch the surface at two lattice sites, 
Hence we must go to higher order to establish the phase sequence. 

h + l  

F h + l  - Fh = (1 -epu)W4h 1 aziW2' -4(  1 -epu)  W 6 h  + 2( 1 - e 2 0 u ) d h  
1 =o 

i = O  

where the first two modifications, O( dh),  to the summation are due to the diagrams 
shown in figure 6, and the second two, O(dh+ ' ) ,  are due to those shown in figure 7. 
Figure 7 ( a )  shows the diagrams which are counted in in which two of the 
fluctuations are of at least height h which should not be included in (A5), whereas 
figure 7( 6 )  shows the diagrams which actually occur when the interface is a distance 
h from the wall. 

1 +-I 1 I!, 

(a  I (bl 

Figure 7. ( a )  Graphs for the unrestricted solid-on-solid model which are counted in a2h+2 
which should not be included when the interface is a distance h from the wall, but must 
be replaced by those shown in ( b ) .  
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Also O( 
h + l  

F,-Fh = ( I  - e p u ) ~ 4 h  1 a , , w 2 ‘ - 4 ( 1  - epu)wbh+2(1  -e2pu)W6h -36(1 - e p u ) W b h + ’  
!=a  

h - 1  + 16( 1 - w6h+2 + w4h+4 C az,w2’ + . . . + wbh+* h odd. (A6) 
I =a  

However, putting equation (A5) equal to zero to define the h : h + 1 boundary, and 
inserting the resultant expression into (A6), again leads to 

Fh, - Fh = 0 + o( W b h t 4 )  h ‘ > h + l .  (A71 

Indeed terms to O ( W ~ ~ + ’ ~ )  are needed in Fh+l - Fh to obtain the non-zero result 
necessary to check if layering occurs. However, one can show that the higher-order 
diagrams d o  not contribute to this difference (Armitstead 1987) and  it is the expansion 
of epu in the terms already shown in (A5) and (A6) which eventually leads to 

Fh - Fh = - 2 w b h + ” + 0 (  wbht12) h ’ > h + l .  (A81 

This free-energy difference is negative and hence, following the inductive argument 
given in 5 3.2, a sequence of layering transitions can be established. 

References 

Abraham D B 1980 Phys. Reu. Lerr. 44 1165 
Armitstead K 1987 D Phil rhesis Oxford Univeristy 
Armitstead K and Yeomans J M 1987 J.  Phys. A: Math. Gen. 20 5635 
Bricmont J ,  El Mellouki A E and Frohlich J 1986 J.  Stat. Phys. 42 743 
Burton W K and Cabrera N 1949 Discuss. Faraday Soc. 5 33 
Chalker J T 1982a J.  Phys. A: Math. Gen.  15 L481 
- 1982b J.  Phys. A: Math. Gen.  15 2899 
Chui S T and Weeks J D 1976 Phys. Reu. B 14 4978 
- 1981 Phvs. Rev. B 23 2438 
Duxbury P M and Yeomans J M 1985 J.  Phys. A: Marh Gen. 18 L983 
Emery V J and Swendsen R H 1977 Phys. Rev. Letr. 39 1414 
Luck J M, Leibler S and Derrida B 1983 J.  Physique 44 1135 
Nightingale M P, Saam W F and Schick M 1984 Phys. Reo. B 30 3830 
Pandit R, Schick M and Wortis M 1982 Phys. Reu. B 26 5112 
Swendsen R H 1977 Phys. Rev. B 15 5421 
Temperley N H V 1952 Proc. Camb.  Phil. Soc. 48 683 
van Beijeren H 1977 Phys. Rev. Letr. 38 993 
Weeks J D, Gilmer G H and Leamy H J 1973 Phys. Rev. Lett. 31 549 


